Sandoz Biosimilars
From concept to reality
The basics of biosimilars

Biosimilars explained

Biologic medicines are produced by a complex process involving living organisms.

These medicines have revolutionized the treatment and prevention of many disabling and life-threatening diseases.

A biosimilar is a follow-on medicine of an existing biologic (also known as ‘reference medicines’) when the patent has expired.

References:
Biologics: reference medicines and biosimilars

Indistinguishable structure, same outcome

To be approved for use, a biosimilar has to match the reference medicine in terms of safety and efficacy in patients, demonstrating no clinically meaningful differences. This is done using advanced analytical, preclinical and clinical studies\(^1\,^2\).

Biosimilars are approved via stringent regulatory pathways by the same regulatory authorities, such as the European Medicines Agency (EMA) or the Food and Drug Administration (FDA) that approve reference medicines. They are manufactured with the same quality standards that are used for reference medicines\(^2\,^3\).

An original and a duplicate key – the same lock and door

Think of a reference medicine and a biosimilar as an original key and a duplicate key respectively. The result of both keys is the same – they both fit the same lock and open the door. In the same way, an approved biosimilar can be expected to have the same safety and beneficial effects in patients as the reference medicine.

References:
Understanding biosimilar development

Variability of biologics

All biologics, whether reference medicine or biosimilar, are produced from living organisms. As a result of this and the complex manufacturing process, they have a certain degree of inherent variability — no two batches are ever the same.

To manage this, any variation has to stay within precise ranges to maintain clinical safety and efficacy. These ranges are set and tightly controlled by both the regulatory authorities and the pharmaceutical company to ensure that all batches of any one biologic are similar.

Regulatory bodies such as the EMA and the FDA will only approve a biosimilar if it is highly similar to the reference medicine and demonstrates no clinically meaningful difference, so that it can be expected to have the same safety and beneficial effects in patients.

EMA

“Comparable safety and efficacy of a biosimilar to its reference product has to be demonstrated or otherwise justified in accordance with the data requirements laid down in Directive 2001/83/EC”

EMA, 2014

FDA

“[Biosimilars can only be approved by the FDA if] there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity, and potency of the product”

US law (BPCIA)

Did you know?

Biologics may slightly change over time due to modifications made to the manufacturing process. All biologics, whether reference medicines or biosimilars, are required to go through similarity testing whenever there is a change in the manufacturing process to ensure that the new process yields a product that falls within the acceptable range of variability.

References:

Robust development process

Demonstrating biosimilarity

Analytical, preclinical and clinical pharmacokinetic/pharmacodynamic (PK/PD) studies demonstrate that the active substance in the biosimilar medicine matches the reference medicine. Final confirmation of biosimilarity requires a clinical Phase III confirmatory safety and efficacy study in a sensitive indication\(^1\)^\(^2\). This is different to the development of reference medicines which focuses on establishing and proving clinical effect. Both approaches provide the same level of confidence with regard to safety and efficacy of the biologic.

Did you know?

A biosimilar has an identical amino acid sequence to the reference medicine.

Stages of the biosimilar development program\(^2\):

- **Analytical**
 Extensive physicochemical characterization to establish ‘sameness’ of the biosimilar to the reference molecule e.g. in terms of molecular structure.

- **Preclinical**
 Functional studies to confirm biological function, for example mode-of-action, between the biosimilar and the reference molecule.

- **Clinical PK/PD**
 Clinical Phase I PK/PD studies in humans to determine bioequivalence i.e. that the biosimilar and the reference medicine will work in the body the same way.

- **Clinical Phase III**
 Clinical Phase III confirmatory safety and efficacy study conducted in a sensitive patient population to confirm that the safety and efficacy of the biosimilar matches the reference medicine.

References:

Totality of evidence

Completeness in data generated through biosimilar development

The totality of evidence is the data package generated from the biosimilar development program to show that the biosimilar matches the reference medicine in terms of structure, function, PK/PD profile, efficacy and safety\(^1\).

Totality of the evidence: Required to conclude whether a proposed biosimilar is approvable as a biosimilar

PRIMARY STRUCTURE\(^2\)

(Magnetic resonance spectra)

- Biosimilar
- Reference medicine (US)
- Reference medicine (EU)

<table>
<thead>
<tr>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

FUNCTION\(^2\)

- Receptor binding affinities

<table>
<thead>
<tr>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1400</td>
</tr>
</tbody>
</table>

- Relative response (RU)

- Reference medicine (EU and US)
- Biosimilar

PHARMACODYNAMIC (PD)\(^2\)

- Geometric mean ANC (x10^9/L)

<table>
<thead>
<tr>
<th>Nominal time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

- Reference medicine
- Biosimilar

EFFICACY & SAFETY\(^2\)

- Time course of ANC (x10^9/L) recovery

<table>
<thead>
<tr>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

- Reference medicine (n=102)
- Biosimilar (n=97)

Schematic diagram showing the different levels of comparison of biosimilar and reference medicine, which form the ‘totality of the evidence’. The examples shown here are from the development of biosimilar filgrastim. ANC, absolute neutrophil count; ppm, parts per million; RU, resonance units.

References:

Extrapolation

From molecule to molecule

Extrapolation is the scientific and regulatory process of granting a clinical indication to a medicine without conducting a separate clinical efficacy and safety study to support that indication:\(^1,2\):

- Through its development program, the safety and efficacy of a reference medicine is assessed in every indication for which it is subsequently approved:\(^1\).
- The biosimilar molecule matches the reference molecule. This is demonstrated through all the information generated in the biosimilar development program i.e. the totality of evidence:\(^1,2\).
- Therefore, the biosimilar molecule can be expected to behave the same way as the reference molecule in all indications and patient populations:\(^1\).

Extrapolation is from reference molecule to biosimilar molecule... It is not from indication to indication:\(^3-5\).

References:

Realizing the potential

The benefit of biosimilars to patients, payors and healthcare professionals

Depending on policies and systems implemented by countries' healthcare authorities, biosimilar medicines have the potential to improve access challenges faced by patients, generate cost savings for healthcare communities and increase treatment options for healthcare professionals (HCPs).

BENEFIT TO PATIENTS

The introduction of affordable, high-quality biosimilars improves access to life-changing medicines for patients worldwide

BENEFIT TO PAYORS

Biosimilars introduce competition, increasing affordability of biologics which delivers savings for healthcare systems, helping to liberate resources that can be used to improve care and fund next-generation medicines

BENEFIT TO HCPS

Introduction of biosimilars drives competition, resulting in increased treatment options and value-added services to support patient care and the healthcare community

The EU saw a 100% increase in use of biologic treatments after the introduction of biosimilars in the EU¹

Cumulative savings over the next five years (2016-2021) in the EU⁵* and the US combined could range from 49 billion EUR to 98 billion EUR¹

Between 2016 and 2020, 225 new active substances are set to come to market worldwide, with 30% expected to be biologics¹

¹*EU5 countries include France, Germany, Italy, Spain and the United Kingdom

References: